Episodes

Student Questions: Curtis High School

This is our second installment in our series of student questions shows and these questions come to us from Curtis High School.
Thanks to GLAST, Astronomy Cast is now able to provide equipment to send to high school teachers who want to Pamela and Fraser to do a special questions show just for their class. We will be making this shows available on the feed on days other than Monday (that’s still reserved for your regularly scheduled Astronomy Cast).
To find out how your class can participate, check out our new Education page for details or drop us an email to info@astronomycast.com

Ep. 75: Stellar Populations

After the big bang, all we had was hydrogen, a little bit of helium, and a few other trace elements. Today, we’ve a whole periodic table of elements to enjoy, from oxygen we breathe to the aluminium cans we drink from to the uranium that powers some people’s homes. How did we get from plain old hydrogen to our current diversity? It came from stars, in fact successive generations of stars.

Ep. 74: Antimatter

Sometimes, we don’t get to decide what our show’s about. So many threads come together at the same time driving the decision for us. This is one of those situations. We’ve gotten so many questions from listeners in just the last week about antimatter that our show had just been chosen for it. You command, we obey. Let’s talk about antimatter.

Ep. 72: Cosmic Rays

We’re going to return back to a long series of episodes we like to call: Radiation that Will Turn You Into a Superhero. This time we’re going to look at cosmic rays, which everyone knows made the Fantastic Four. These high-energy particles are streaming from the Sun and even intergalactic space, and do a wonderful job of destroying our DNA, giving us radiation sickness, and maybe (hopefully!) turning us into superheroes.

Ep. 71: Gravitational Waves

When he put together his theories of relativity, Einstein made a series of predictions. Some were confirmed just a few years later, but scientists are still working to confirm others. And one of the most fascinating is the concept of gravitational waves. As massive objects move in space, they send out ripples across the Universe that actually distort the shape of matter. Experiments are in place and in the works to detect these gravitational waves as they sweep past the Earth.

Ep. 70: How To Win a Nobel Prize

Now that you’ve got your career in astronomy, obviously the next goal is to win a Nobel prize. We’re here at the American Astronomical Society meeting in Austin, which is just one tiny step that a person has to take before you get that Nobel prize. Before you get that call in the middle of the night from Sweden, you’re going to need to come with an idea, do some experiments, write a paper, get published and a bunch of other stuff. This week, we’ll tell you all about it.

Student Questions: Farmersburg

Thanks to GLAST, Astronomy Cast is now able to provide equipment to send to high school teachers who want to Pamela and Fraser to do a special questions show just for their class. We will be making this shows available on the feed on days other than Monday (that’s still reserved for your regularly scheduled Astronomy Cast). This is the first one available and comes with questions from Farmersburg School.
To find out how your class can participate, check out our new Education page for details or drop us an email to info@astronomycast.com

Ep. 69: The Large Hadron Collider and the Search for the Higgs-Boson

When it was first developed, the standard model predicted a collection of particles, and thanks to more and more powerful colliders, physicsists have been able to find them all except one: the Higgs-Boson. It’s an important one because it should explain how objects have mass. The European Large Hadron Collider should have the power and sensitivity to find the Higgs-Boson.

Ep. 68: Globular Clusters

This week we’re going to study some of the most ancient objects in the entire Universe; globular clusters. These relics of the early Universe contain hundreds of thousands of stars, held together by their mutual gravity. Since they formed together, they give astronomers a unique way to test various theories of stellar evolution.