Pollution will ultimately give away a society.

Pollution will ultimately give away a society.
The next great eclipse is upon us, with viewers across North America witnessing the moon passing in front of the Sun. It’s an amazing experience, but also an opportunity to do science. Let’s talk about what we can learn from this momentous event.
Whenever astronomers discover something surprising, the answer often turns out to be dust. Dust obscuring our view, dust changing the polarity, dust warming things up, dust cooling things down. It’s always dust. Until it isn’t.
If you’re in dark skies and look up, you’re certain to see a satellite. Lots of them. But how can you know which one you’re seeing, and how can you improve your chances of a sighting? Today we’ll talk about how to see satellites, or avoid seeing them.
Astronomers came together in January to present their newest research, and not surprisingly, the Winter AAS meeting was heavy on news from JWST. What were some of the new results that were announced?
It’s always sad to say goodbye, but when we send our robotic emissaries out into the cosmos, it’s just a matter of time before they shut down. Today we’re going to say goodbye to a few missions which have reached the end of their lives. But they were very good robots.
Well, this is it, we’re finally going to talk about the James Webb Space Telescope. After decades of development, delays and budget creep, the powerful infrared observatory is at its final home at the L2 Lagrange Point. Yesterday we saw the first scientific images from the telescope, and according to Pamela’s rules, we’re finally allowed to talk about it.
There are general-purpose telescopes and missions that astronomers can use to study specific objects. And there are survey missions that look at the entire sky, which astronomers can use to answer questions about the Universe. We’ve talked about surveys in the past, but the landscape is changing fast so it’s time for an update.
A recent image from the South African Meerkat telescope blew our minds. It was a high resolution image of the center of the Milky Way, showing delicate filaments and other structures. What was so mind blowing is that this was an image from a radio telescope. Today we’re going to talk about why this was such an accomplishment and what the future holds for radio astronomy.
In a rare moment of weakness, Pamela has decided she’s open to the possibility that a future exists. That missions, telescopes and spacecraft are going to be built and they’re going to do some science. Today we’ll talk about what we’re looking forward to before she changes her mind and ruins Fraser’s naive optimism for the future.
With all the success of James Webb so far, it’s looking like science’s huge gamble is going to pay off, but there were years of delays and budget overruns. What impacts did these delays have on science, careers, and the future of space exploration?
We’ve reached the end of 2021, and this is the last episode of the year. Let’s look back at the big space events of the last year and talk about what we’re looking forward to in 2022.
You’re familiar with the Hubble Space Telescope, of course, but it’s just one of NASA’s Great Observatories. After Hubble came three more incredible observatories, each greater than the last. Together, they would fill in almost the entire electromagnetic spectrum.
Last week we talked about the various ways that astronomers could detect the presence of intelligent civilizations by observing technosignatures. This week we’ll give you an update on the state of searching for extraterrestrials. This field has gone from a collection of pariahs to a completely legitimate field of research. What’s changed?
When you think about the world’s observatories, I’m sure you’re imagining huge telescopes perched atop mountain peaks, or space telescopes like Hubble. But you might be surprised to learn that some telescopes are carried high into the atmosphere on board balloons. What can they accomplish?
Day by day, we’re losing our connection with the night sky. Already 1/3rd of humanity lives in so much light pollution that they can’t see the Milky Way without a drive. And now satellite constellations are adding additional light pollution, even in the darkest skies on Earth.
Today, we gaze into the future of space and astronomy. What upcoming missions and events are we excited about?
Discovering comets is one of the fields that amateurs can still make a regular contribution to astronomy. But more and more telescopes are getting found by spacecraft, automated systems and machine learning. This week, we’ll talk about how comets are discovered and how you can get your name on one.
As everyone knows, the Universe owes us a bright comet. There have been a lot of promising candidates, but in the end, they always fail to live up to our expectations. Comets keep on breaking up with us.
For the longest time astronomers could only study the skies with telescopes. But then new techniques and technologies were developed to help us see in different wavelengths. Now astronomers can study objects in both visible light, neutrinos, gravitational waves and more. The era of multi-messenger astronomy is here.
This week we’re live at the American Astronomical Society’s 235th meeting in Honolulu, Hawai’i. We learned about new planets, black holes and star formation, but the big issue hanging over the whole conference is the protests and politics over the new Thirty Meter Telescope due for construction on Mauna Kea.
Ancient peoples had no light pollution, and they knew the night skies very well. In fact, they depends on them to know when to plant and when to harvest. Today Pamela talks about the archeoastronomical sites of the American Southwest. In this episode we mentioned...
We always focus on the missions, but there’s an important glue that holds the whole system together. The Deep Space Network. Today we’re going to talk about how this system works and how it communicates with all the spacecraft out there in the Solar System.
This is our second episode in a two part series where we look at Transients in astronomy. In last week’s episode, we talked about things that change here in our own Solar System. Now we’ll talk about everything else in the Milky Way and beyond.
Astronomers have found that sometimes the Universe changes. Things move, things explode, things get brighter or dimmer. In fact, knowing this has helped astronomers discover some very important aspects of the Universe. Today we begin a two part series on Transients and their role in astronomy.